Respuesta :
the coordinate for endpoint d would be (-7,-2) because the distance from point c to the midpoint e is 6 points to the left and 2 down which means is the same distance from midpoint e to point d

Answer:
(-7,-2)
Step-by-step explanation:
Given: The midpoint of CD is E(-1, 0) one endpoint is C(5, 2)
To Find: coordinates of the other endpoint
Solution:
in line segment CD,
end point C is (5,2)
let other end point D be=[tex](\text{x},\text{y})[/tex]
mid point of segment CD is E, (-1,0)
We know that,
if [tex]( \text{x}_{2} ,\text{y}_2)[/tex] is mid point of a line segment with endpoint [tex]( \text{x}_{1} ,\text{y}_{1})[/tex] and [tex]( \text{x}_{3} ,\text{y}_{3})[/tex] , then
[tex]\text{x}_{2} =\frac{\text{x}_{1}+\text{x}_{3}}{2}[/tex]
and
[tex]\text{y}_{2} =\frac{\text{y}_{1}+\text{y}_{3}}{2}[/tex]
therefore putting values
[tex]-1=\frac{5+\text{x}}{2}[/tex]
[tex]-2=5+\text{x}[/tex]
[tex]\text{x}= -7[/tex]
[tex]0=\frac{2+\text{y}}{2}[/tex]
[tex]0=2+\text{x}[/tex]
[tex]\text{x}= -2[/tex]
therefore the coordinates of the other endpoint D are(-7,-2)