Question 1

A set of values is shown below.

12.7, 22, 23.5, 24, 11, 22

What is the mean absolute deviation of the set of values?

Respuesta :

Answer:

[tex]M.A.D= 4.9[/tex]

Step-by-step explanation:

Given

12.7, 22, 23.5, 24, 11, 22

Required

Determine the M.A.D

Start by calculating the Mean

[tex]Mean = \frac{\sum x}{n}[/tex]

In this case, n = 6

So:

[tex]Mean = \frac{12.7 + 22 + 23.5 + 24 + 11 + 22}{6}[/tex]

[tex]Mean = \frac{115.2}{6}[/tex]

[tex]Mean = 19.2[/tex]

Subtract the mean from each element

[tex]12.7 - 19.2 = -6.5[/tex]

[tex]22 - 19.2 = 2.8[/tex]

[tex]23.5 - 19.2 = 4.3[/tex]

[tex]24 - 19.2 = 4.8[/tex]

[tex]11 - 19.2 = -8.2[/tex]

[tex]22 - 19.2 = 2.8[/tex]

Take absolute value of the results above

[tex]|-6.5| = 6.5[/tex]

[tex]|2.8| = 2.8[/tex]

[tex]|4.3| = 4.3[/tex]

[tex]|4.8| = 4.8[/tex]

[tex]|-8.2| = 8.2[/tex]

[tex]|2.8| = 2.8[/tex]

The mean of the above gives the MAD

[tex]M.A.D= \frac{\sum |x - u|}{n}[/tex]

[tex]M.A.D= \frac{6.5 + 2.8 + 4.3 + 4.8 + 8.2 + 2.8}{6}[/tex]

[tex]M.A.D= \frac{29.4}{6}[/tex]

[tex]M.A.D= 4.9[/tex]