The base of pyramid A is a rectangle with a length of 10 meters and a width of 20 meters. The base of pyramid B is a square with 10-meter sides. The heights of the pyramids are the same.

Respuesta :

Answer:

Step-by-step explanation:

Given question is incomplete; here is the complete question.

The base of pyramid A is a rectangle with a length of 10 meters and a width of 20 meters. The base of pyramid B is a square with 10-meter sides. The heights of the pyramids are the same.

The volume of pyramid A is ____ the volume of pyramid B. If the height of pyramid B increases to twice that of pyramid A, the new volume of pyramid B is ______the volume of pyramid A.

Since, volume of pyramid = [tex]\frac{1}{3}(\text{Area of the base})(\text{Height})[/tex]

Volume of the pyramid A = [tex]\frac{1}{3}(\text{length}\times \text{Width})(\text{height})[/tex]

                                          = [tex]\frac{1}{3}(10\times 20)(h)[/tex]

                                          = [tex]\frac{200h}{3}[/tex]

Volume of pyramid B = [tex]\frac{1}{3}(10)^2(h)[/tex]

                                    = [tex]\frac{100h}{3}[/tex]

Ratio of the volumes of the pyramids = [tex]\frac{\text{Volume of pyramid A}}{\text{Volume of pyramid B}}[/tex]

                                                              = [tex]\frac{\frac{200h}{3}}{\frac{100h}{3} }[/tex]

                                                              = 2

Therefore, volume of pyramid A is TWICE the volume of pyramid B.

If If height of the pyramid B increases twice of pyramid A,

Then the volume of pyramid B = [tex]\frac{1}{3}(100)(2h)[/tex]

                                                   = [tex]\frac{200h}{3}[/tex]

Ratio of volumes of pyramid B and pyramid A = [tex]\frac{\text{Volume of pyramid B}}{\text{Volume of pyramid A}}[/tex]

                                                                            = [tex]\frac{\frac{200h}{3}}{\frac{200h}{3}}[/tex]

                                                                            = 1

Therefore, new volume of pyramid B is EQUAL to the volume of pyramid A.