What are the coordinates of the point 3/4 of the way from A to B?

Answer:
(-3.5, 1.25)
Step-by-step explanation:
Given:
A(-5, -4)
B(-3, 3)
Required:
Coordinates of the point 3/4 of the distance between A and B.
SOLUTION:
Find the coordinates using the formula below:
[tex] (x, y) = (x_1 + k(x_2 - x_1), y_1 + k(y_2 - y_1)) [/tex]
Let,
[tex] A(-5, -4) = (x_1, y_1) [/tex]
[tex] B(-3, 3) = (x_2, y_2) [/tex]
[tex] k = \frac{3}{4} [/tex]
Plug in the values into the formula:
[tex] (x, y) = (-5 + \frac{3}{4}(-3 -(-5)), -4 + \frac{3}{4}(3 -(-4)) [/tex]
[tex] (x, y) = (-5 + \frac{3}{4}(2), -4 + \frac{3}{4}(7) [/tex]
[tex] (x, y) = (-5 + \frac{3*2}{4}, -4 + \frac{3*7}{4} [/tex]
[tex] (x, y) = (-5 + 1.5, -4 + 5.25) [/tex]
[tex] (x, y) = (-3.5, 1.25) [/tex]
The coordinates of the point 3/4 from A to B are (-3.5, 1.25).