Answer:
[tex]\lambda =2.31x10^{-36}m[/tex]
Explanation:
Hello,
In this case, since the Broglie's wavelength for bodies is defined via:
[tex]\lambda =\frac{h}{mv}[/tex]
Whereas h accounts for the Planck's constant, m the mass and v the velocity, which is:
[tex]v=\frac{1mile}{7.0min}*\frac{1609.34m}{1mile}*\frac{1min}{60s}=3.83\frac{m}{s}[/tex]
Thus, the wavelength turns out:
[tex]\lambda =\frac{6.63x10^{-34}kg\frac{m^2}{s} }{75kg*3.83\frac{m}{s} } \\\\\lambda =2.31x10^{-36}m[/tex]
Best regards.