solve for the specified variable

Answer:
[tex] s = \frac{2A}{f} - z [/tex]
Step-by-step explanation:
Given:
[tex] A = \frac{1}{2}f(s + z) [/tex]
Required:
Make s the subject of the formula
SOLUTION:
[tex] A = \frac{1}{2}f(s + z) [/tex] (given)
Multiply both sides by 2
[tex] 2*A = \frac{1}{2}f(s + z)*2 [/tex] (multiplication property of equality)
[tex] 2A = f(s + z) [/tex]
Divide both sides by f
[tex] \frac{2A}{f} = \frac{f(s + z)}{f} [/tex] (division property of equality)
[tex] \frac{2A}{f} = s + z [/tex]
Subtract z from both sides
[tex] \frac{2A}{f} - z = s + z - z [/tex] (Subtraction property of equality)
[tex] \frac{2A}{f} - z = s [/tex]
Rewrite the equation
[tex] s = \frac{2A}{f} - z [/tex]