Respuesta :

Answer:

[tex] s = \frac{2A}{f} - z [/tex]

Step-by-step explanation:

Given:

[tex] A = \frac{1}{2}f(s + z) [/tex]

Required:

Make s the subject of the formula

SOLUTION:

[tex] A = \frac{1}{2}f(s + z) [/tex] (given)

Multiply both sides by 2

[tex] 2*A = \frac{1}{2}f(s + z)*2 [/tex] (multiplication property of equality)

[tex] 2A = f(s + z) [/tex]

Divide both sides by f

[tex] \frac{2A}{f} = \frac{f(s + z)}{f} [/tex] (division property of equality)

[tex] \frac{2A}{f} = s + z [/tex]

Subtract z from both sides

[tex] \frac{2A}{f} - z = s + z - z [/tex] (Subtraction property of equality)

[tex] \frac{2A}{f} - z = s [/tex]

Rewrite the equation

[tex] s = \frac{2A}{f} - z [/tex]