You want to prove
[tex]\displaystyle\lim_{x\to1}\frac{4+2x}3=2[/tex]
By the definition of the limit, this means that for any [tex]\varepsilon>0[/tex], we can find [tex]\delta>0[/tex] such that
[tex]|x-1|<\delta\implies\left|\dfrac{4+2x}3-2\right|<\varepsilon[/tex].
In order to get the inequality we want, we need to have
[tex]\left|\dfrac{4+2x}3-2\right|=\left|\dfrac{2x-2}3\right|=\dfrac23|x-1|<\varepsilon\implies|x-1|<\dfrac{3\varepsilon}2[/tex]
so we can pick [tex]\delta=\frac{3\varepsilon}2[/tex].
So here's the proof: Let [tex]\varepsilon>0[/tex] be given, and let [tex]\delta=\frac{3\varepsilon}2[/tex]. Then
[tex]|x-1|<\delta=\dfrac{3\varepsilon}2[/tex]
[tex]\implies\dfrac23|x-1|<\varepsilon[/tex]
[tex]\implies\left|\dfrac{2x-2}3\right|=\left|\dfrac{2x+4}3-1\right|<\varepsilon[/tex]
as required.