Suppose f(x) = 2x-1 and g (x) = x + 1/a. Which value(s) of a would make the composite functions commutative? A. 0 B. 2 C. any value of a D. no value of a

Suppose fx 2x1 and g x x 1a Which values of a would make the composite functions commutative A 0 B 2 C any value of a D no value of a class=

Respuesta :

Answer:

2

Step-by-step explanation:

A commutative function means that when you insert one function in space of x in the other function, they will equal x. The equation is f(g(x)) = g(f(x)) = x

So, 2([tex]\frac{x+1}{a}[/tex]) - 1 = [tex]\frac{(2x-1)+1}{a}[/tex]

If you multiply both sides by a, you get   2a([tex]\frac{x+1}{a}[/tex]) - a = (2x-1)+1

Simplify it                                                   2a([tex]\frac{x+1}{a}[/tex]) - a = 2x

Add a to both sides                                    2a([tex]\frac{x+1}{a}[/tex])  = 2x +a

The two as on the left cancel out                   2(x+1)=2x+a

Distribute the 2                                               2x+2=2x+a

Then subtract 2x from both sides                        2 = a

Therefore, a = 2

Hope this helps!

Answer:2

Step-by-step explanation: