Given:
The volume V(x) in cubic inches of this type of open-top box is a function of the side length x in inches of the square cutouts and can be given by
[tex]V(x)=(17-2x)(11-2x)(x)[/tex]
To find:
The above equation by expanding the polynomial.
Solution:
We have,
[tex]V(x)=(17-2x)(11-2x)(x)[/tex]
Using distributive property, we get
[tex]V(x)=[17(11-2x)-2x(11-2x)](x)[/tex]
[tex]V(x)=[17(11)+17(-2x)-2x(11)-2x(-2x)](x)[/tex]
[tex]V(x)=[187-34x-22x+4x^2](x)[/tex]
Combining likes terms, we get
[tex]V(x)=[187-56x+4x^2](x)[/tex]
Using distributive property, we get
[tex]V(x)=187x-56x^2+4x^3[/tex]
[tex]V(x)=4x^3-56x^2+187x[/tex]
Therefore, the required equation after expanding the polynomial is [tex]V(x)=4x^3-56x^2+187x[/tex].