Respuesta :

Sec^2 x - 1 = tan^2x

Proof:
Sec^2x = 1+ tan^2x

1/cos^2x = 1 + sin^2x/cos^2x

1/cos^2x - sin^2x/cos^2x = 1
Using common denominator:
(1-sin^2x)/cos^2x = 1
sin^2x + cos^2 x = 1
cos^2 x = 1 - sin^2x
Substituting : 
cos^2x/cos^2x = 1
1 = 1
Left hand side = right hand side 

Answer:

option B tan²x

Step-by-step explanation:

We have to simplify the expression given as ( [tex]sec^{2}[/tex]x-1 )

Since sec x = [tex]\frac{1}{cosx}[/tex]

so ( [tex]\frac{1}{cosx}[/tex] )² - 1 = [tex]\frac{1}{cos^{2} x}[/tex] - 1

=[tex]\frac{1-cos^{2}x }{cos^{2}x}[/tex]

= [tex]\frac{sin^{2}x }{cos^{2}x}[/tex]

= tan²x

Therefore, option B tan²x is the answer.