Respuesta :
Sec^2 x - 1 = tan^2x
Proof:
Sec^2x = 1+ tan^2x
1/cos^2x = 1 + sin^2x/cos^2x
1/cos^2x - sin^2x/cos^2x = 1
Using common denominator:
(1-sin^2x)/cos^2x = 1
sin^2x + cos^2 x = 1
cos^2 x = 1 - sin^2x
Substituting :
cos^2x/cos^2x = 1
1 = 1
Left hand side = right hand side
Proof:
Sec^2x = 1+ tan^2x
1/cos^2x = 1 + sin^2x/cos^2x
1/cos^2x - sin^2x/cos^2x = 1
Using common denominator:
(1-sin^2x)/cos^2x = 1
sin^2x + cos^2 x = 1
cos^2 x = 1 - sin^2x
Substituting :
cos^2x/cos^2x = 1
1 = 1
Left hand side = right hand side
Answer:
option B tan²x
Step-by-step explanation:
We have to simplify the expression given as ( [tex]sec^{2}[/tex]x-1 )
Since sec x = [tex]\frac{1}{cosx}[/tex]
so ( [tex]\frac{1}{cosx}[/tex] )² - 1 = [tex]\frac{1}{cos^{2} x}[/tex] - 1
=[tex]\frac{1-cos^{2}x }{cos^{2}x}[/tex]
= [tex]\frac{sin^{2}x }{cos^{2}x}[/tex]
= tan²x
Therefore, option B tan²x is the answer.