Respuesta :

Answer:

[tex]y = \frac{\pi}{2}cos(\frac{2\pi}{3}x)[/tex]

Step-by-step explanation:

Given

[tex]Amplitude = \frac{\pi}{2}[/tex]

[tex]Period = 3[/tex]

Required

Write the equivalent cosine function

The general formula is:

[tex]y = acos(bx)[/tex]

Where

[tex]amplitude = |a|[/tex]

[tex]period = \frac{2\pi}{b}[/tex]

Substitute [tex]\frac{\pi}{2}[/tex] for amplitude in [tex]amplitude = |a|[/tex]

[tex]|a| = \frac{\pi}{2}[/tex]

[tex]a = \frac{\pi}{2}[/tex]

Substitute 3 for period in [tex]period = \frac{2\pi}{b}[/tex]

[tex]\frac{2\pi}{b} = 3[/tex]

Multiply both sides by b

[tex]2\pi = 3b[/tex]

Divide through by 3

[tex]b = \frac{2\pi}{3}[/tex]

Hence;

[tex]y = acos(bx)[/tex] becomes

[tex]y = \frac{\pi}{2}cos(\frac{2\pi}{3}x)[/tex]