Respuesta :
a) The equation is, P = 0.38 t^2 - 2.45 t + 5.1
Where,
t = time (hrs)
P = population (1000's).
b) At, t = 9 hours
P = 0.38*9^2 - 2.45*9 + 5.1
P = 13.83.
Where,
t = time (hrs)
P = population (1000's).
b) At, t = 9 hours
P = 0.38*9^2 - 2.45*9 + 5.1
P = 13.83.
Answer: a) A quadratic model for the data in the table:[tex]0.38x^2-2.45x+5.1[/tex].
b) The population of bacteria at 9 hours will be 138,30
Explanation:
a) General quadratic model formula :[tex]y=Ax^2+Bx+C[/tex]
By using data given we will have three quadratic equation:
(time:population):(x,y):(0, 5.1) , (1, 3.03) , (2, 1.72)
[tex]5.1=A(0)^2+B(0)+C[/tex]...(1)
[tex]3.03=A(1)^2+B(1)+C[/tex]...(2)
[tex]1.72=A(2)^2+B(2)+C[/tex]....(3)
On solving these equation we get value of constant A B and C:
A = 0.38 , B = -2.45 and C = 5.1
A quadratic model for the data in the table:[tex]0.38x^2-2.45x+5.1[/tex]
b) The population of bacteria at 9 hours
Using the Quadratic equation determined above:
[tex]0.38x^2-2.45x+5.1[/tex]
putting x = 9 hours
we get :
[tex]0.38(9)^2-2.45(9)+5.1[/tex] = 13.38
Since the data of population given is in thousands so the population of the bacteria at 9 hour will be 13,830.
The population of bacteria at 9 hours will be 138,30