Respuesta :

Answer:

[tex](g\ o\ f)(x) = -10x^2 + 25x + 44[/tex]

Step-by-step explanation:

Given

[tex]f(x) = 2x^2 - 5x - 8[/tex]

[tex]g(x) = -5x+4[/tex]

Required

[tex]Find:\ (g\ o\ f)(x)[/tex]

In functions;

[tex](g\ o\ f)(x) = g(f(x))[/tex]

Substitute [tex]f(x) = 2x^2 - 5x - 8[/tex] in [tex](g\ o\ f)(x) = g(f(x))[/tex]

[tex](g\ o\ f)(x) = g(f(2x^2 - 5x - 8))[/tex]

Solving for [tex]g(f(2x^2 - 5x - 8))[/tex]

If [tex]g(x) = -5x+4[/tex]

then

[tex]g(f(2x^2 - 5x - 8)) = -5(2x^2 - 5x - 8) + 4[/tex]

Open Bracket

[tex]g(f(2x^2 - 5x - 8)) = -10x^2 + 25x + 40 + 4[/tex]

[tex]g(f(2x^2 - 5x - 8)) = -10x^2 + 25x + 44[/tex]

Recall that:

[tex](g\ o\ f)(x) = g(f(2x^2 - 5x - 8))[/tex]

This implies that

[tex](g\ o\ f)(x) = -10x^2 + 25x + 44[/tex]