Answer:
The worker needs 3.74L of ingredient B
Step-by-step explanation:
Given
[tex]A:B = 1.3L:2.7L[/tex]
Required
Determine the B equivalent of (1.3L + 0.5L) of A
[tex]A:B = 1.3L:2.7L[/tex]
Convert to Fraction
[tex]\frac{A}{B} = \frac{1.3L}{2.7L}[/tex]
[tex]\frac{A}{B} = \frac{1.3}{2.7}[/tex] ----(1)
For the new mix of A
[tex]New\ A = 1.3L + 0.5L[/tex]
[tex]New\ A = 1.8L[/tex]
New A requires New B:
So:
We have:
[tex]New\ A: New\ B[/tex]
Convert this to fraction;
[tex]Ratio = \frac{New\ A}{New\ B}[/tex]
Substitut2 1.8L for New A
[tex]Ratio = \frac{1.8L}{New\ B}[/tex] --- (2)
Equate (1) and (2)
[tex]\frac{1.8L}{New\ B} = \frac{1.3}{2.7}[/tex]
Cross Multiply:
[tex]New\ B * 1.3 = 1.8L * 2.7[/tex]
Divide through by 1.3
[tex]New\ B = \frac{1.8L * 2.7}{1.3}[/tex]
[tex]New\ B = \frac{4.86L}{1.3}[/tex]
[tex]New\ B = 3.74\ L[/tex] (Approximated)
Hence;
The worker needs 3.74L of ingredient B