Respuesta :

Answer:

it is x=7

x=-1

Step-by-step explanation:

i using the quadratic formula

Step-by-step explanation:

Hey there!!

The equation is;

[tex] {x}^{2} - 6x + 7 = 0[/tex]

Now, Comparing it with ax^2 + bx + c = 0. we get;

a = 1, b= -6 and c = 7

Use quadratic formula.

[tex]x = \frac{ - b + - \sqrt{ {b}^{2} - 4ac} }{2a} [/tex]

Put all values.

[tex]x = \frac{ + 6 + - \sqrt{( { - 6)}^{2} - 4 \times 1 \times 7} }{2 \times 1} [/tex]

Simplify them.

[tex]x = \frac{6 + - \sqrt{36 - 28} }{2} [/tex]

[tex]x = \frac{ 6 + - \sqrt{8} }{2} [/tex]

[tex]x = \frac{6 + - 2 \sqrt{2} }{2} [/tex]

Taking positive (+).

[tex]x = \frac{6 + 2 \sqrt{2} }{2} [/tex]

Simplifying them.

[tex]x = \frac{2(3 + \sqrt{2} )}{2} [/tex]

[tex]x = 3 + \sqrt{2} [/tex]

Now, Taking negative (-).

[tex]x = \frac{6 - 2 \sqrt{2} }{2} [/tex]

Simplifying them.

[tex]x = \frac{2(3 - \sqrt{2} )}{2} [/tex]

[tex]x = 3 - \sqrt{2} [/tex]

Therefore the answer is;

[tex]x = 3 + \sqrt{2} \: and \: 3 - \sqrt{2} [/tex]

Hope it helps...