Respuesta :

Answer:

1

Step-by-step explanation:

Using the trig. identity

sin²x + cos²x = 1

Given

[tex]\frac{sin^4x-cos^4x}{sin^2x-cos^2x}[/tex]

[tex]sin^{4}[/tex]x - [tex]cos^{4}[/tex]x ← is a difference of squares and factors as

(sin²x - cos²x)(sin²x + cos²x), then fraction becomes

= [tex]\frac{(sin^2x-cos^2x)(sin^2x+cos^2x)}{sin^2x-cos^2x}[/tex] ← cancel (sin²x - cos²x) on numerator/ denominator

= sin²x + cos²x

= 1