An airplane with a hot-wire anemometer mounted on its wing tip is to fly through the turbulent boundary layer of the atmosphere at a speed of 50 m/sec. The velocity fluctuations in the atmosphere are of order 0.5 m/sec, the length scale of the large eddies is about 100 m. The hot-wire anemometer is to be designed so that it will register the motion of the smallest eddies.What is the highest frequency the anemometer will encounter

Respuesta :

Answer:

0.55 hz

Explanation:

Given that the plane fly through the turbulent boundary layer of the atmosphere at a speed of 50 m/sec. And the velocity fluctuations in the atmosphere are of order 0.5 m/sec, the length scale of the large eddies is about 100 m.

The maximum speed attained will be

Maximum speed = 50 + 0.5 = 5.5 m/s

The Length = 100m

Speed = FL

Where F = frequency

Substitute speed and distance length into the formula

55 = 100F

F = 55/100

F = 0.55 Hz

Therefore, the highest frequency the anemometer will encounter will be 0.55 Hz

Answer:

40079 Hz

Explanation:

1. The first step is to calculate energy dissipation ∈=u^3/l and here u is fluctuating velocity

∈=(0.5^3)/100 = 0.00125 m^2/s^3

2. Find out the length scale of the small eddies

η=(viscosity/∈)^1/4

η=(1.470e-5/0.00125)^1/4 = 0.00126 m

3. The frequency associated with these small-scale eddies will be the greatest frequency the anemometer will encounter, thus:

u_max=f_max * η

u_max = u + u' = 50+0.5=50.5 m/s

f_max = u_max/η = 50.5/0.00126 = 40079 Hz

This is the heighest frequency the anemometer will encounter.