Answer:
The answer to this question can be defined as follows:
In option a "0.0067".
In option b "0.1755".
In option c "0.5595".
Step-by-step explanation:
It is about the distribution of Poisson:
[tex]\lambda = 5 (rate)[/tex]
t = 1
The formula for calculating Mean:
[tex]\to \mu = \lambda \times t[/tex]
[tex]\to P(X=x) = \frac{e^{-\mu} \mu^{x}}{x!}[/tex]
calculate the value of Mean:
[tex]\to \mu =5 \times 1\\\\ \to \mu= 5[/tex]
In point a:
When the value of x is equal to 0:
[tex]\to P(X = 0) = \frac{e^{-5} 5^{0}}{0!}[/tex]
[tex]= \frac{e^{-5} \times 1 }{0}\\\\ = 0.0067 \times 1 \\\\ = 0.0067[/tex]
In point b:
When the value of x is equal to 5:
[tex]\to P(X = 0) = \frac{e^{-5} 5^{5}}{5!}[/tex]
[tex]= \frac{e^{-5} \times 3125 }{120}\\\\ = \frac{0.0067 \times 3125}{120} \\\\ = \frac{21.0560}{120}\\\\ =0.1754 \\\\[/tex]
In point c:
When the value of x is equal to 5:
[tex]\to P(X \ge 5) = 1 - P(X < 5) \\\\ \to P(X \ge 5) = 1 - P(X = 0) - P(X = 1) - P(X = 2) - P(X = 3) - P(X = 4) \\\\ \to P(X \ge 5) = 0.5595[/tex]