Respuesta :

Given:

Nancy decides to roll a dice three times.

To find:

The probability that she will roll all even numbers.

Solution:

If a dice is rolled, then the possible numbers are

Total number = {1,2,3,4,5,6} = 6

Even numbers = {2,4,6} = 3

Odd numbers = {1,3,5} = 3

Probability of getting an even number [tex]=\dfrac{\text{Even number}}{\text{Total numbers}}[/tex]

[tex]P(\text{Even})=\dfrac{3}{6}[/tex]

[tex]P(\text{Even})=\dfrac{1}{2}[/tex]

So, probability of getting all even numbers is

[tex]P(\text{All even})=P(\text{Even})\times P(\text{Even})\times P(\text{Even})[/tex]

[tex]P(\text{All even})=\dfrac{1}{2}\times \dfrac{1}{2}\times \dfrac{1}{2}[/tex]

[tex]P(\text{All even})=\dfrac{1}{8}[/tex]

Therefore, the required probability is [tex]P(\text{All even})=\dfrac{1}{8}[/tex].

The probability that Nancy will roll all even numbers will be:

"[tex]\frac{1}{8}[/tex]".

Probability

According to the question,

Number of times dice rolled = 3

Total numbers = {1, 2, 3, 4, 5, 6}

                        = 3

Even numbers = {2, 4, 6}

                        = 3

Odd numbers = {1, 3, 5}

                       = 3  

Now,

The probability of getting even numbers will be:

= [tex]\frac{Even \ numbers}{Total \ numbers}[/tex]

= [tex]\frac{3}{6}[/tex]

= [tex]\frac{1}{2}[/tex]

hence,

The required probability be:

= P(Even) × P(Even) × P(Even)

= [tex]\frac{1}{2}\times \frac{1}{2}\times \frac{1}{2}[/tex]

= [tex]\frac{1}{8}[/tex]

Thus the above answer is correct.

Find out more information about probability here:

https://brainly.com/question/24756209