By Bernoulli's Principle :
[tex]P_x+\dfrac{\rho v_x^2}{2}+\rho gz_x=P_y+\dfrac{\rho v_y^2}{2}+\rho gz_y[/tex]
Since , pipe is horizontal so every point is at same height .
So , [tex]z_x=z_y[/tex] .
The equation will reduced to :
[tex]P_x+\dfrac{\rho v_x^2}{2}=P_y+\dfrac{\rho v_y^2}{2}[/tex] ..... 1 )
Also flow rate will be constant :
[tex]Q=A_xv_x=A_yv_y[/tex]
[tex]v_x=\dfrac{Q}{A_x}\\\\v_x=\dfrac{2.4\times 10^{-4}}{3\times 10^{-4}}\ m/s\\\\v_x=0.8\ m/s[/tex]
[tex]v_y=\dfrac{Q}{A_y}\\\\v_y=\dfrac{2.4\times 10^{-4}}{0.6\times 10^{-4}}\ m/s\\\\v_x=4\ m/s[/tex]
Now ,
[tex]P_x-P_y=\dfrac{\rho v_y^2}{2}-\dfrac{\rho v_x^2}{2}\\\\P_x-P_y=\rho[\dfrac{ v_y^2}{2}-\dfrac{v_x^2}{2}]\\\\P_x-P_y=1000\times [\dfrac{ 4^2}{2}-\dfrac{0.8^2}{2}]\\\\P_x-P_y=7680\ Pa[/tex]
Difference in pressure between X and Y is most near to 7700 Pa.
Hence, this is the required solution.