Respuesta :

Answer:

[tex] \boxed{ \bold{ \huge{ \tt{ \sqrt{173 \:}} \: units}}} [/tex]

Step-by-step explanation:

[tex] \star{ \tt{ \: \: Let \: the \: points \: be \: A \: and \: B}}[/tex]

[tex] \star{ \tt{ \: Let \: A ( 5 , 1 ) \: be \: ( x1 ,\: y1

) \: and \: B ( -8 , 3 ) \: be \: ( x2 , y2 )}}

[/tex]

[tex] \sf{ \underline{ finding \: the \: distance \: between \: these \: points}}[/tex]

[tex] \boxed{ \underline{ \underline{ \tt{distance \: = \: \sqrt{ {(x2 - x1)}^{2} + {(y2 - y1)}^{2}}}}}}[/tex]

[tex] \hookrightarrow{ \tt{ \sqrt{ {( - 8 - 5)}^{2} + {(3 - 1)}^{2} } }}[/tex]

[tex] \hookrightarrow{ \tt{ \sqrt{ {( - 13)}^{2} + {(2)}^{2} } }}[/tex]

[tex] \hookrightarrow{ \tt{ \sqrt{169 + 4}}} [/tex]

[tex] \hookrightarrow{ \boxed{ \tt{ \sqrt{173} \: \: units}}}[/tex]

Hope I helped!

Best regards! :D

~TheAnimeGirl

Answer:

Step-by-step explanation:

(x₁ , y₁) = (5 , 1)    & (x₂ , y₂) = (-8 , 3)

[tex]Distance = \sqrt{(x_2-x_1)^{2} + (y_2-y_1)^{2}}\\\\ =\sqrt{(-8-5)^{2}+(3-1)^{2}}\\\\=\sqrt{-13)^{2}+2^{2}}\\\\=\sqrt{169+4}\\\\=\sqrt{173}units[/tex]