Respuesta :

Answer:

98,000

Step-by-step explanation:

[tex]5^{4} *7^{5}* 2^{8}/16*125*7^{3}[/tex]

[tex]=5^{4} * 7^{5}* 2^{8} /2^{4} *5^{3} *7^{3}[/tex]

[tex]=5^{4-1} *7^{5-3} *2^{8-4}[/tex]

=[tex]5^{3} *7^{2} *2^{4}[/tex]

=[tex]125*49*16[/tex]

[tex]=98000[/tex]

Answer:

Step-by-step explanation:

Factorize all the numbers in numerator and denominator

16 = 2*2*2*2

125 = 5 *5 *5

[tex]\frac{a^{m}}{a^{n}}=a^{m-n}[/tex],  where m >n

[tex]\frac{5^{4}*7^{5}*2^{8}}{16*125*7^{3}}=\frac{5^{4}*7^{5}*2^{8}}{2^{4}*5^{3}*7^{3}}\\\\\\=5^{(4-3)}*7^{(5-3)}*2^{(8-4)}\\\\\\=5^1*7^2*2^{4}[/tex]