Answer:
[tex]P(C\ and\ D) = 153\%[/tex]
Step-by-step explanation:
Given
[tex]P(C) = 98\%[/tex]
[tex]P(D) = 88\%[/tex]
[tex]P(C\ or\ D) = 33\%.[/tex]
Required
[tex]P(C\ and\ D)[/tex]
In probability, the relationship between the given parameters and the required parameter is:
[tex]P(C\ and\ D) = P(C) + P(D) - P(C\ or\ D)[/tex]
Substitute values in the above formula
[tex]P(C\ and\ D) = 98\% + 88\% - 33\%[/tex]
[tex]P(C\ and\ D) = 153\%[/tex]
No, it can't be a probability
Because [tex]P(C\ and\ D) > 100\%[/tex]