**Please Help. ASAP**

Rearrange the formula so the letter in parenthesis is the subject. Show your work as well.


1) v-u/a = t, (v)

2) y-x^2/x = 3z, (y)

3) x+xy = y, (x)

4) x+y = xy, (x)

5) x = y+xy, (x)

6) E = (1/2)mv^2-(1/2)mu^2, (u)

7) (x^2/a^2)-(y^2/b^2) = 1, (y)

8) ay^2 = x^3, (y)

Respuesta :

Answer:

The answer is below

Explanation:

1)

[tex]\frac{v-u}{a} =t\\\\Making \ v\ the \ subject\ of\ formula:\\\\First \ cross-multiply:\\\\v-u=at\\\\add\ u\ to \ both\ sides:\\\\v-u+u=at+u\\\\v=u+at[/tex]

2)

[tex]\frac{y-x^2}{x}=3z\\ \\Making\ y\ the\ subject\ of\ formula:\\\\First \ cross \ multiply:\\\\y-x^2=3xz\\\\y=3xz+x^2\\\\y=x(x+3z)[/tex]

3)

[tex]x+xy=y\\\\Making\ x\ the\ subject\ of\ formula:\\\\x(1+y)=y\\\\Divide\ through\ by\ 1+y\\\\\frac{x(1+y)}{1+y} =\frac{y}{1+y} \\\\x=\frac{y}{1+y}[/tex]

4)

[tex]x+y=xy\\\\Making\ x\ the\ subject\ of\ formula:\\\\Subtract\ x\ from \ both\ sides:\\\\x+y-x=xy-x\\\\y=xy-x\\\\y=x(y-1)\\\\Divide\ through\ by \ y-1\\\\\frac{y}{y-1} =\frac{x(y-1)}{y-1}\\ \\x=\frac{y}{y-1}[/tex]

5)

[tex]x=y+xy\\\\Making\ x\ the\ subject\ of\ formula:\\\\Subtract\ xy\ from \ both\ sides:\\\\x-xy=y+xy-xy\\\\x-xy=y\\\\x(1-y)=y\\\\Divide\ through\ by \ 1-y\\\\\frac{x(1-y)}{1-y} =\frac{y}{1-y}\\ \\x=\frac{y}{1-y}[/tex]

6)

[tex]E=\frac{1}{2}mv^2-\frac{1}{2}mu^2\\ \\Making\ u\ the\ subject \ of\ formula:\\\\Multiply \ through\ by \ 2\\\\2E=mv^2-mu^2\\\\mu^2=mv^2-2E\\\\Divide\ through\ by\ m:\\\\u^2=\frac{mv^2-2E}{m}\\ \\Take\ square\ root\ of \ both\ sides:\\\\u=\sqrt{\frac{mv^2-2E}{m}}[/tex]

7)

[tex]\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\\ \\Making\ y\ the\ subject \ of\ formula:\\\\\frac{x^2}{a^2}-1=\frac{y^2}{b^2}\\\\Multiply\ through\ by\ b^2\\\\b^2(\frac{x^2}{a^2} -1)=y^2\\\\Take\ square\ root\ of\ both\ sides:\\\\y=\sqrt{b^2(\frac{x^2}{a^2} -1)}[/tex]

8)

[tex]ay^2=x^3\\\\Make\ y\ the\ subject\ of\ formula:\\\\Divide\ through\ by\ a:\\\\y^2=\frac{x^3}{a}\\ \\Take\ square\ root\ of\ both\ sides:\\\\y=\sqrt{\frac{x^3}{a}} \\[/tex]