The manufacturer wants to estimate the proportion of their cars that get over 100 mpg. Their sample of 30 indicates that 28% can obtain over 100 mpg. Construct a 95% confidence interval for the population proportion.

Respuesta :

Answer:

The  95% confidence interval is [tex]0.1193 < p <0.4407[/tex]

Step-by-step explanation:

From the question we are told that

   The sample size is  [tex]m = 30[/tex]

   The sample proportion is  [tex]\r p = 0.28[/tex]

   

Given that the confidence interval is  95% then the level of significance is mathematically represented as

           [tex]\alpha = 100 - 95[/tex]

           [tex]\alpha = 5\%[/tex]

          [tex]\alpha = 0.05[/tex]

Next we obtain the critical value of the [tex]\frac{\alpha }{2}[/tex] from the normal distribution table, the value is

        [tex]Z_{\frac{ \alpha }{2} } = 1.96[/tex]

Generally the margin of error is mathematically represented as

       [tex]E = Z_{\frac{ \alpha }{2} } * \sqrt{\frac{ ( \r p (1 - \r p ))}{n} }[/tex]

=>    [tex]E = 1.96 * \sqrt{\frac{ (0.28 (1 - 0.28 ))}{ 30} }[/tex]

=>   [tex]E = 0.1607[/tex]

The  95% confidence interval is  

     [tex]\r p - E < p < \r p + E[/tex]

=> [tex]0.28 - 0.1607 < p < 0.28 + 0.1607[/tex]

=> [tex]0.1193 < p <0.4407[/tex]