Answer:
Therefore, electron will have a longer de Broglie Wavelength.
Explanation:
The de Broglie wavelength is given by the following formula:
λ = h/mv
where.
λ = de Broglie wavelength
h = Plank's Constant
m = mass of the particle.
v = speed of the particle
Since, the speed of both electron and proton is same and Plank's constant is also a constant. Therefore, the de Broglie wavelength depends solely upon the mass of electron and proton, as follows:
λ ∝ 1/m
It shows that wavelength is inversely proportional to the mass of particle.
Since, the mass of electron is less than the mass of proton.
Therefore, electron will have a longer de Broglie Wavelength.