Answer:
the expected absorbance of the solution = 0.17
Explanation:
From the information given:
Using Beer's Lambert Law, we have
A = ∈CL
where;
A = Absorbance
∈ = extinction coefficient
C = concentration
L = cell length
Since Absorbance is associated with concentration.
Assuming the measurement were carried out in the same solution; Then ∈ and L will be constant and A ∝ C ----- (1)
Let consider the concentration to be C (mol/L)
5.0 mL of a Sports Drink = 5.0 mL × C (mol)/1000 mL
= 5C/1000 mL
was diluted with water to 10.0 mL
So, when diluted with water to 10.0 mL; we have:
The new concentration to be : [tex]\dfrac{(5 C \times 1000) \ mol }{(1000 \times 10 \times 1000)\ mL}[/tex]
Since :1000mL = 1 L
The new concentration = [tex]\dfrac{C \ mol }{2 \ L}[/tex]
As stated that the initial absorbance reading [tex]A_1[/tex] = 0.34
The expected absorbance reading will be [tex]A_2[/tex] = ???
From (1)
A ∝ C
∴
[tex]\dfrac{A_2}{A_1}=\dfrac{C_2}{C}[/tex]
[tex]A_2 = \dfrac{A_1}{C}[/tex]
[tex]A_2 = \dfrac{0.34}{2}[/tex]
[tex]A_2 = 0.17[/tex]
Thus ; the expected absorbance of the solution = 0.17