Respuesta :

Answer:

15.25 cm²

Step-by-step explanation:

Step 1: find the width of the rectangle, AE.

[tex] cos(60) = \frac{EA}{8} [/tex]

[tex] 8*0.5 = EA [/tex]

[tex] 4 = EA [/tex]

[tex] EA = 4 cm [/tex]

Step 2: Find the area of the rectangle

[tex] Area_{rectangle} = length * width = 8*4 = 32 cm^2 [/tex]

Step 3: Find the area of the sector.

Take π as 3.14

[tex] Area_{sector} = \frac{30}{360}*3.14*8^2 [/tex]

[tex] Area_{sector} = \frac{30}{360}*3.14*8^2 = 16.75 cm^2 [/tex]

Step 4: Find the area of the shaded region.

Area of shaded region = [tex] Area_{Rectangle} - Area_{sector} = 32 - 16.75 = 15.25 cm^2 [/tex]