Respuesta :

Answer:

[tex]\bold{x = 34^\circ}[/tex]

Step-by-step explanation:

Given:

[tex]cos x = sin (x + 22^\circ)[/tex]

To solve:

The given equation.

Solution:

First of all, let us consider an important property of sine and cosine.

[tex]sin(90^\circ-\theta )=cos\theta[/tex]

OR

[tex]cos(90^\circ-\theta )=sin\theta[/tex]

We can apply above property to solve for [tex]x[/tex] as per given equation.

[tex]cos x = sin (x + 22^\circ)[/tex]

Changing [tex]cosx[/tex] to sine form:

[tex]cosx=sin(90^\circ-x)[/tex]

[tex]cosx=sin(90^\circ-x) = sin(x+22^\circ)[/tex]

[tex]\therefore 90^\circ-x=x+22^\circ\\\Rightarrow 90^\circ-22^\circ=x+x\\\Rightarrow 2x=68^\circ\\\Rightarrow \bold{x = 34^\circ}[/tex]

So, solution to the equation [tex]cos x = sin (x + 22^\circ)[/tex] is:

[tex]\bold{x = 34^\circ}[/tex]