Find f. (Use C for the constant of the first antiderivative, D for the constant of the second antiderivative and E for the constant of the third antiderivative.)
f '''(t) = (t)^1/2 − 9 cos(t)
f(t) = _______.

Respuesta :

You just need to integrate 3 times:

[tex]f'''(t)=t^{1/2}-9\cos t[/tex]

[tex]f''(t)=\displaystyle\int f'''(t)\,\mathrm dt=\frac23 t^{3/2}-9\sin t+C[/tex]

[tex]f'(t)=\displaystyle\int f''(t)\,\mathrm dt=\frac4{15} t^{5/2}+9\cos t+Ct+D[/tex]

[tex]f(t)=\displaystyle\int f'(t)\,\mathrm dt=\frac8{105} t^{7/2}+9\sin t+\frac C2 t^2+Dt+E[/tex]