Which statement is correct? StartFraction 3.56 times 10 Superscript 2 Baseline Over 1.09 times 10 Superscript 4 Baseline EndFraction less-than-or-equal-to (4.08 times 10 Superscript 2 Baseline) (1.95 times 10 Superscript negative 6 baseline) StartFraction 3.56 times 10 Superscript 2 Baseline Over 1.09 times 10 Superscript 4 Baseline EndFraction less-than (4.08 times 10 Superscript 2 Baseline) (1.95 times 10 Superscript negative 6 baseline) StartFraction 3.56 times 10 Superscript 2 Baseline Over 1.09 times 10 Superscript 4 Baseline EndFraction greater-than (4.08 times 10 Superscript 2 Baseline) (1.95 times 10 Superscript negative 6 baseline) StartFraction 3.56 times 10 Superscript 2 Baseline Over 1.09 times 10 Superscript 4 Baseline EndFraction = (4.08 times 10 Superscript 2 Baseline) (1.95 times 10 Superscript negative 6 baseline)

Respuesta :

The true statement that compares both expressions is [tex]\frac{3.56 \times 10^2}{1.09 \times 10^4} > (4.08 \times 10^2 ) \cdot (1.95 \times 10^{-6})[/tex]

The expressions on either side are given as:

[tex]\frac{3.56 \times 10^2}{1.09 \times 10^4}[/tex]

[tex](4.08 \times 10^2 ) \cdot (1.95 \times 10^{-6})[/tex]

Start by simplifying both expressions, and then make comparison.

For the first expression, we have:

[tex]\frac{3.56 \times 10^2}{1.09 \times 10^4}[/tex]

Split

[tex]\frac{3.56 \times 10^2}{1.09 \times 10^4} = \frac{3.56}{1.09} \times \frac{10^2}{10^4}[/tex]

Apply law of indices

[tex]\frac{3.56 \times 10^2}{1.09 \times 10^4} = \frac{3.56}{1.09} \times 10^{2-4}[/tex]

[tex]\frac{3.56 \times 10^2}{1.09 \times 10^4} = \frac{3.56}{1.09} \times 10^{-2[/tex]

Divide 3.56 by 1.09

[tex]\frac{3.56 \times 10^2}{1.09 \times 10^4} = 3.27 \times 10^{-2[/tex]

For the second expression, we have:

[tex](4.08 \times 10^2 ) \cdot (1.95 \times 10^{-6})[/tex]

Expand as follows:

[tex](4.08 \times 10^2 ) \cdot (1.95 \times 10^{-6}) = (4.08 \times 1.95) \cdot ( 10^2 \times 10^{-6})[/tex]

Apply law of indices

[tex](4.08 \times 10^2 ) \cdot (1.95 \times 10^{-6}) = (4.08 \times 1.95) \cdot ( 10^{2-6})[/tex]

[tex](4.08 \times 10^2 ) \cdot (1.95 \times 10^{-6}) = (4.08 \times 1.95) \cdot ( 10^{-4})[/tex]

Multiply 4.08 and 1.95

[tex](4.08 \times 10^2 ) \cdot (1.95 \times 10^{-6}) = 7.96 \times 10^{-4}[/tex]

[tex]\frac{3.56 \times 10^2}{1.09 \times 10^4}[/tex] and [tex](4.08 \times 10^2 ) \cdot (1.95 \times 10^{-6})[/tex] becomes

[tex]3.27 \times 10^{-2} \ [\ \ ] 7.96 \times 10^{-4}[/tex]

By comparison, the expression on the left-hand side is greater than the expression in the right-hand side

So, we have:

[tex]3.27 \times 10^{-2} \ > 7.96 \times 10^{-4}[/tex]

So, the true statement is

[tex]\frac{3.56 \times 10^2}{1.09 \times 10^4} > (4.08 \times 10^2 ) \cdot (1.95 \times 10^{-6})[/tex]

Read more about inequalities at:

https://brainly.com/question/18881247

Answer:

C

Step-by-step explanation:

Otras preguntas