Respuesta :

Answer:

7234.56 in³

Step-by-step explanation:

4/3πr³

4/3 (3.14)(12)³

7234.56 in³

Answer:

7,234.56 cm^2

Step-by-step explanation:

We want to find the volume of the beach ball. The beach ball is in the shape of a sphere. The formula for the volume of a sphere is :

[tex]V=\frac{4}{3} \pi r^3[/tex]

We know the width, or diameter of the sphere is 24 cm. We need to find the radius. The radius is half the diameter.

r= d/2

r= 24 cm/2

r= 12 cm

The radius is 12 cm, and we can substitute it into the formula.

[tex]V=\frac{4}{3} \pi (12 cm) ^3[/tex]

First, evaluate the exponent.

(12 cm)³= 12 cm * 12cm * 12 cm= 144 cm² * 12 cm = 1728 cm³

[tex]V=\frac{4}{3} \pi * 1728 cm^3[/tex]

Substitute 3.14 in for pi.

[tex]V=\frac{4}{3} * 3.14 * 1728 cm^3[/tex]

Multiply all three numbers together.

[tex]V= 4.18666666 * 1728 cm^3[/tex]

[tex]V= 7234.55999 cm^3[/tex]

Round to the nearest hundredth. The 9 in the thousandth place tells us to round the 5 to a 6  in the hundredth place.

[tex]V= 7234.56 cm^3[/tex]

The volume of the beach ball is 7,234.56 cubic centimeters and choice 3 is correct.