Respuesta :

Answer:

[tex] KS = 12 [/tex]

Step-by-step explanation:

Given that ∆KLM ~ ∆RSK, [tex] \frac{KL}{KR} = \frac{KM}{KS} [/tex] (similarity theorem)

KL = 65

KR = 65 - 52 = 13

KM = 60

KS = ?

[tex] \frac{65}{13} = \frac{60}{KS} [/tex]

Cross multiply

[tex] 65*KS = 60*13 [/tex]

[tex] 65*KS = 780 [/tex]

[tex] \frac{65*KS}{65} = \frac{780}{65} [/tex]

[tex] KS = 12 [/tex]