What is the wavelength of radiation emitted when an electron goes from the n = 7 to the n = 4 level of the Bohr hydrogen atom? Give your answer in nm.

Respuesta :

Answer:

the wavelength of radiation emitted  is [tex]\mathbf{\lambda= 2169.62 \ nm}[/tex]

Explanation:

The energy of the Bohr's hydrogen atom can be expressed with the formula:

[tex]\mathtt{E_n =- \dfrac{13.6\ ev}{n^2}}[/tex]

For n = 7:

[tex]\mathtt{E_7 =- \dfrac{13.6\ ev}{7^2}}[/tex]

[tex]\mathtt{E_7 =-0.27755 \ eV}[/tex]

For n = 4

[tex]\mathtt{E_4=- \dfrac{13.6\ ev}{4^2}}[/tex]

[tex]\mathtt{E_4 =- 0.85\ eV}[/tex]

The  electron goes from the n = 7 to the n = 4, then :

[tex]\mathtt{E_7-E_4 = (-0.27755 - (-0.85) ) \ eV}[/tex]

[tex]\mathtt{= 0.57245\ eV}[/tex]

Wavelength of the radiation emitted:

[tex]\mathtt{\lambda= \dfrac{hc}{0.57245 \ eV}}[/tex]

where;

hc  = 1242 eV.nm

[tex]\mathtt{\lambda= \dfrac{1242 \ eV.nm }{0.57245 \ eV}}[/tex]

[tex]\mathbf{\lambda= 2169.62 \ nm}[/tex]