Answer: D. [tex] f(1) = 4,\ \ f(n+1)=\dfrac{-1}{2}f(n) [/tex]
Step-by-step explanation:
The given sequence: [tex]4, -2,1,\dfrac{-1}{2},\dfrac14,....[/tex]
Here, first term: [tex]f(1)=4[/tex]
Second term: [tex]f(2)=-2[/tex]
Third term : [tex]f(3)=\dfrac{-1}{2}[/tex]
It can be observed that it is neither increasing nor decreasing sequence but having the common ratio.
Common ratio: [tex]r=\dfrac{f(2)}{f(1)}=\dfrac{-2}{4}=\dfrac{-1}{2}[/tex]
So, [tex]f(n+1)=\dfrac{-1}{2}f(n)[/tex] [as in G.P. nth term= [tex]a_{n+1}=ar^n[/tex]]
Hence, correct option is D. [tex] f(1) = 4,\ \ f(n+1)=\dfrac{-1}{2}f(n) [/tex]