Respuesta :

Answer:

The answer is

[tex]x = \frac{ {e}^{ \frac{3}{ ln(2) } } }{4} [/tex]

Step-by-step explanation:

[tex] ln(2) \times ln(4x) = 3[/tex]

Divide both sides of the equation by ln 2

That's

[tex] \frac{ ln(2) ln(4x) }{ ln(2) } = \frac{3}{ ln(2) } [/tex]

We have

[tex] ln(4x) = \frac{3}{ ln(2) } [/tex]

Covert the logarithm into exponential form using the property

[tex] ln(x) = b

\: \: is \: \: \: the \: \: \: same \: \: \: as \: \: \: \:

x = {e}^{b} [/tex]

Are all the same

So

[tex] ln(4x) = \frac{3}{ ln(2) } [/tex]

is the same as

[tex]4x = {e}^{ \frac{3}{ ln(2) } } [/tex]

Divide both sides by 4

We have the final answer as

[tex]x = \frac{ {e}^{ \frac{3}{ ln(2) } } }{4} [/tex]

Hope this helps you