[tex] \Large{ \boxed{ \mathbb{ \pink{SOLUTION:}}}}[/tex]
The AP would be like:
Now,
➝ First term = 1
➝ Common difference = 2
➝ No. of terms = 50
By using formula,
[tex] \large{ \boxed{ \rm{S_n = \frac{n}{2} \bigg(2a + (n - 1)d \bigg)}}} [/tex]
Here,
Proceeding further,
➝ S50 = 50/2{ 2 × 1 + (50 - 1)2 }
➝ S50 = 25{ 2 + 49 × 2 }
➝ S50 = 25{ 100 }
➝ S50 = 2500
⛈️ Sum of 50 terms of AP = 2500
Shortcut trick:- n^2
Then, Sum of 50(n) terms = 50^2 = 2500
☘️ Hence, solved !!
━━━━━━━━━━━━━━━━━━━━
Answer:
2500
Step-by-step explanation:
The Sum of First 50 Odd Natural Numbers:
1+3+5+7+9+11+13+15+17+19+21+23+25+27+29+31+33+35+37+39+41+43+45+47+49+51+53+55+57+59+61+63+65+67+69+71+73+75+77+79+81+83+85+87+89+91+93+95+97+99
= 2500