Respuesta :

Step-by-step explanation:

x+y=9

x=9-y ----------(i)

Now in second eqn put the value of x

2x -3y=8

2(9-y) - 3y=8

18 - 2y - 3y=8

18-8=5y

10=5y

y=2

Then put the value of y in eqn (i)

x=9-y

x=9-2

x=7

I hope this will be helpful for you.

Answer:

[tex] \huge {\boxed{ \bold{ \boxed{(7 \:, 2)}}}}[/tex]

Step-by-step explanation:

Given,

x + y = 9

2x - 3y = 8

Using substitution method:

In this method , a variable is expressed in terms of another variable from one equation and it is substituted in the remaining equation.

[tex] \mathsf{x + y = 9}[/tex]

Move y to right hand side and change it's sign

⇒[tex] \mathsf{x = 9 - y}[/tex]⇔equation ( i )

Now, put the value of X from equation ( i )

⇒[tex] \mathsf{ 2 (9 - y) - 3y = 8}[/tex]

Distribute 2 through the parentheses

⇒[tex] \mathsf{18 - 2y - 3y = 8}[/tex]

Collect like terms

⇒[tex] \mathsf{18 - 5y = 8}[/tex]

Move constant to right hand side and change it's sign

⇒[tex] \mathsf{ - 5y = 8 - 18}[/tex]

Calculate

⇒[tex] \mathsf{ - 5y = - 10}[/tex]

Divide both sides of the equation by -5

⇒[tex] \mathsf{ \frac{ - 5y}{ - 5} = \frac{ - 10}{ - 5} }[/tex]

Calculate

⇒[tex] \mathsf{y = 2}[/tex]

Now, Put the value of y in the equation ( i )

⇒[tex]x = 9 - 2[/tex]

Calculate the difference

⇒[tex] \mathsf{x = 7}[/tex]

Hence, x = 7 and y = 2

The possible solution of the system is the ordered pair ( x , y )

[tex] \mathsf{(x \: , y \: ) = (7 , \: 2)}[/tex]

---------------------------------------------------------

Check if the given ordered pair is the solution of the system of equation

⇒[tex] \mathsf{7 + 2 = 9}[/tex]

⇒[tex] \sf{2 \times 7 - 3 \times 2 = 8}[/tex]

Simplify the equalities

⇒[tex] \sf{9 = 9}[/tex]

⇒[tex] \mathsf{8 = 8}[/tex]

Since all of the equalities are true , the ordered pair is the solution of the system.

[tex] \mathsf{ \underline{ \bold{(x \:, y \: ) = (7 \:, 2)}}}[/tex]

Hope I helped!

Best regards!!