Respuesta :

[tex] \Large{ \boxed{ \bf{ \color{blue}{Solution:}}}}[/tex]

By using the fact that,

When,

[tex] \large{ \sf{ {a}^{x} =b}}[/tex]

Then, With logarithm base a of a number b:

[tex] \large{ \sf{ log_{a}(b) = x}}[/tex]

☃️So, Let's solve ths question....

To FinD:

[tex] \large{ \sf{log_{2}(256) }}[/tex]

Let it be x,

[tex] \large{ \sf{ \longrightarrow{ log_{2}(256) = x}}}[/tex]

Proceeding further,

[tex] \large{ \sf{ \longrightarrow \: {2}^{x} = 256}}[/tex]

[tex] \large{ \sf{ \longrightarrow \: {2}^{x} = {2}^{8} }}[/tex]

Then, We have same base 2, So

[tex] \large{ \sf{ \longrightarrow \: x = 8}}[/tex]

Or,

➙ log₂(256) = log₁₀(256) / log₁₀(2)

➙ log₂(256) = 2.40823996531 / 0.301029995664

➙ log₂(256) = 8

☕️ Hence, solved !!

━━━━━━━━━━━━━━━━━━━━

Answer:

256

Step-by-step explanation:

log     256 can most easily be found by rewriting 256 as a power of 2:

      2

2^5 * 2^3 = 32*8 = 256, so 2^ (5 + 3) = 2^8.    

Then we have:

  log     256

2        2             = 256

Alternatively, write:

log (down)2 256 = log (down)2 2^8 = 2*8 = 256

Note that your "log (down)^2 and the function y = 2^x are inverse functions that effectively cancel one another.