Answer:
The correct answer will be "0.3043".
Step-by-step explanation:
The given values are:
[tex]\mu = 15[/tex]
[tex]n=41[/tex]
[tex]\sigma^2=25[/tex]
then,
[tex]\sigma=5[/tex]
If researchers know representative sample n > 30 and default deviation those who use z-test
∴ [tex]P(x>15.4)[/tex]
⇒ [tex]1-P(x<15.4)[/tex]
⇒ [tex]1-P(\frac{x-\mu}{\frac{\sigma}{\sqrt{n} } } <\frac{15.4-15}{\frac{5}{\sqrt{41} } } )[/tex]
⇒ [tex]1-P(Z<0.51225)[/tex]
⇒ [tex]1-0.695762[/tex]
⇒ [tex]0.3043[/tex]