Two projectiles are thrown from the same point with the velocity of49ms-1. First is

projected making an angle with the horizontal and the second at an angle of (90- ). The

second is found to rise 22.5m higher than the first. Find the heights to which each will rise?

Respuesta :

Answer:

Height of the first projectile = 49.98 m

Height of the second projectile = 72.52 m

Explanation:

From the given information;

Two projectiles are thrown from the same point with the velocity of49m/s

First is  projected making an angle  θ with the horizontal

and the second at an angle of 90 - θ.

Thus; for the first height to the horizontal; we have;

[tex]H_1 = \dfrac{v^2 sin^2 \theta}{2g}[/tex]  ----- (1)

the second height in the vertical direction is :

[tex]H_2 = \dfrac{v^2 cos^2 \theta}{2g}[/tex]    -----(2)

However; the second is found to rise 22.5 m higher than the first; so , we have :

[tex]\dfrac{v^2 cos^2 \theta}{2g}= 22.5 + \dfrac{v^2 sin^2 \theta}{2g}[/tex]

Let's recall that :

Cos²θ = 1 - Sin²θ

Replacing it into above equation; we have:

[tex]\dfrac{v^2}{2g} - \dfrac{v^2 sin^2 \theta}{2g}= 22.5 + \dfrac{v^2 sin^2 \theta}{2g}[/tex]

[tex]\dfrac{v^2}{2g} - 22.5 = \dfrac{v^2 sin^2 \theta}{g}[/tex]

[tex]\dfrac{1}{2 } \dfrac{v^2}{g} - 22.5 = \dfrac{v^2 sin^2 \theta}{g}[/tex]

[tex]\dfrac{1}{2 } - \dfrac {9.8 \times 22.5}{(49)^2} = sin^2 \theta[/tex]

[tex]\dfrac{1}{2 } - \dfrac {220.5}{2401} = sin^2 \theta[/tex]

[tex]sin^2 \theta= 0.408[/tex]

From (1);

[tex]H_1 = \dfrac{v^2 sin^2 \theta}{2g}[/tex]

[tex]H_1 = \dfrac{49^2 \times 0.408}{2*9.8}[/tex]

[tex]H_1 = \dfrac{979.608}{19.6}[/tex]

[tex]\mathbf{H_1 =49.98 \ m }[/tex]

Height of the first projectile = 49.98 m

Similarly;

From(2)

[tex]H_2 = \dfrac{v^2 cos^2 \theta}{2g}[/tex]    

[tex]H_2 = \dfrac{v^2 (1-sin^2 \theta)}{2g}[/tex]

[tex]H_2 = \dfrac{49^2 (1-0.408 )}{2 \times 9.8}[/tex]

[tex]H_2 = \dfrac{2401 (0.592 )}{19.6}[/tex]

[tex]H_2 = \dfrac{1421.392}{19.6}[/tex]

[tex]\mathbf{H_2 = 72.52 \ m}[/tex]

Height of the second projectile = 72.52 m