Respuesta :
Answer:
To determine the inverse of the given function, change f(x) to y, switch x and y and solve for y and [tex]f^{-1}(x)= \frac{ln\ x+4}{2}[/tex]
Step-by-step explanation:
Data provided in the question
f(x) = e^2x - 4
Now
to find the inverse let
So,
y = e^2x - 4
Now
Replace x and y
Therefore
x = e^2y - 4
Now compute the value of y
So,
x + 4 = e^2y
Now take ln on both sides:
The equation is
ln(x+4) = ln(e^2y)
ln(x+4) = 2y
y = ln(x+4) ÷ 2
[tex]f^{-1}(x)= \frac{ln\ x+4}{2}[/tex]
Therefore, To determine the inverse of the given function, change f(x) to y, switch x and y and solve for y and [tex]f^{-1}(x)= \frac{ln\ x+4}{2}[/tex]
Answer:
Put them in this order in the fill in the blanks, X,Y, 4, 2
Step-by-step explanation: