Respuesta :

Answer:

  • Yes because 9x2+6x=0 when x=-2/3

Answer:

option 4

Step-by-step explanation:

Simplify the equation,

9x² + 6x = 3x ( 3x + 2)

9x² + 3x = 3x*(3x + 1)

9x² + 9x + 2 =9x² + 3x + 6x + 2*1

                    = 3x(3x + 1) + 2(3x + 1)

                  = (3x+ 1)(3x +2 )

[tex]\frac{10}{9x^{2}+6x}-\frac{1}{9x\frac{}{}+3x}=\frac{10}{3x(3x+2)}-\frac{1}{3x(3x+1)}\\\\=\frac{10(3x+1)}{3x(3x+1)(3x+2)}-\frac{1(3x+2)}{3x(3x+1)(3x+2))}\\\\=\frac{10(3x+1)-(3x+2)}{3x(3x+1)(3x+2)}\\\\\\\frac{5}{9x^{2}+9x+2}= \frac{10(3x+1)-(3x+2)}{3x(3x+1)(3x+2)}\\\\\frac{5}{(3x+1)(3x+2)}=\frac{10(3x+1)-(3x+2)}{3x(3x+1)(3x+2)}\\[/tex]

Both sides (3x+1)(3x+2) will get cancelled

[tex]5=\frac{10(3x+1)-(3x+2)}{3x}\\[/tex]

Cross multiply,

5(3x) =10(3x+1)-(3x+2)

When x = -2/3, LHS = 5(3x) = [tex]5*3*\frac{-2}{3}[/tex]

                                 = -10

When x= -2/3, RHS = 10(3x+1)-(3x+2)

                                = [tex]10(3*\frac{-2}{3}+1)-(3*\frac{-2}{3}+2)\\[/tex]

                                = 10(-2+1) - (-2+2)

                                = 10 * (-1) -0

                               = -10

LHS = RHS

So, -2/3 is a solution