The triangular prism has a volume of 27 cubic units. A triangular prism. What will be the volume of the prism if each side is dilated by a factor One-third? 1 cubic unit 3 cubic units 8 cubic units 9 cubic units

Respuesta :

Answer:

Option (2)

Step-by-step explanation:

Volume of a prism A (preimage) = 27 cubic units

Factor of dilation of the sides of this prism (image) = [tex]\frac{1}{3}[/tex]

Volume scale factor of these prisms = [tex]\frac{\text{Volume of image}}{\text{Volume of preimage}}[/tex]

Since, Volume scale factor = (Scale factor of dilation of the sides)³

                                             = [tex](\frac{1}{3})^3[/tex]

                                             = [tex]\frac{1}{9}[/tex]

Now from the formula of volume scale factor,

[tex]\frac{1}{9}=\frac{\text{Volume of image}}{\text{Volume of preimage}}[/tex]

[tex]\frac{1}{9}=\frac{\text{Volume of image}}{27}[/tex]

Volume of the image prism = [tex]\frac{27}{9}[/tex] = 3 cubic units

Therefore, Option (2) will be the answer.                                                    

Answer:

1 cubic unit

Step-by-step explanation: