What is one solution of the following system? StartLayout Enlarged left-brace 1st row 2 y minus 2 x = 12 2nd row x squared + y squared = 36 EndLayout (–6, 0) (–2, 4) (0, –6) (4, –2)

Respuesta :

Answer:

Option A.

Step-by-step explanation:

The given equations are

[tex]2y-2x=12[/tex]     ...(1)

[tex]x^2+y^2=36[/tex]    ...(2)

From equation (1), we get

[tex]2y=12+2x[/tex]

[tex]y=\dfrac{12+2x}{2}[/tex]

[tex]y=6+x[/tex]         ...(3)

Substitute [tex]y=6+x[/tex] in equation (2).

[tex]x^2+(6+x)^2=36[/tex]

[tex]x^2+36+12x+x^2=36[/tex]

[tex]2x^2+12x=0[/tex]

[tex]2x(x+6)=0[/tex]

[tex]x=0,-6[/tex]

Put x=0, in equation (3).

[tex]y=6+0=6[/tex]

Put x=-6, in equation (3).

[tex]y=6-6=0[/tex]

It means, (0,6) and (-6,0) are two solutions of the given system of equations.

Therefore, the correct option is A.

Answer:

A on edge

Step-by-step explanation: