Respuesta :

Answer:

Step-by-step explanation:

In the figure attached,

ΔABC is an equilateral triangle,

Sides AB = BC = AC and points P, Q, and R are the midpoints of these sides respectively.

If the coordinates of A(0, 0), B(2a, 0) and C(a, b)

AB = 2a

AC = [tex]\sqrt{a^2+b^2}[/tex]

Since AB = AC

2a = [tex]\sqrt{a^2+b^2}[/tex]

4a² = a² + b²

3a² = b²

Therefore, ordinate pairs representing midpoints of AB, BC and AC will be

P = [tex](\frac{2a+0}{2},\frac{0}{2})[/tex] =(a, 0)

Q = [tex](\frac{a+2a}{2},\frac{b}{2})[/tex] = [tex](\frac{3a}{2},\frac{b}{2})[/tex]

R = [tex](\frac{a+0}{2},\frac{b+0}{2})[/tex] = [tex](\frac{a}{2},\frac{b}{2})[/tex]

Now we will find the lengths of medians with the help of formula of distance between two points (x, y) and (x', y')

d = [tex]\sqrt{(x-x')^2+(y-y')^2}[/tex]

AQ = [tex]\sqrt{(0-\frac{b}{2})^2+(0-\frac{3a}{2})^2}[/tex]

     = [tex]\sqrt{\frac{b^2}{4}+\frac{9a^2}{4}}[/tex]

     = [tex]\frac{1}{2}(\sqrt{b^2+9a^2})[/tex]

     = [tex]\frac{1}{2}\sqrt{12a^2}[/tex]  [Since b² = 3a²]

     = [tex]a\sqrt{3}[/tex]

BR = [tex]\sqrt{(2a-\frac{a}{2})^{2}+(0-\frac{b}{2})^2}[/tex]

     = [tex]\sqrt{(\frac{3a}{2})^2+(-\frac{b}{2})^2}[/tex]

     = [tex]\frac{1}{2}\sqrt{b^2+9a^2}[/tex]

     = [tex]\frac{1}{2}(\sqrt{12a^2})[/tex]

     = [tex]a\sqrt{3}[/tex]

CP = b = [tex]a\sqrt{3}[/tex]

Therefore, AQ = BR = CP = [tex]a\sqrt{3}[/tex]

Hence, medians of an equilateral triangle are equal.

Answer:

Hi! Please refer to the image attached. I promise this is a real answer, I got this question right on mine. :D

Good luck!

Ver imagen aryadtonnes