Respuesta :
Answer:
Step-by-step explanation:
Find the maximum value of
C = 3x -2y Objective function
subject to the following constraints.
Constraints
x ≥ 0
y ≥ 0
2x + y ≤ 10 vertex 1 : when x=0 then y=10 (0,10)
3x + 2y ≤ 18 vertex 2 : y=0, then x=6 ( 6,0)
two equations together to determine vertex 3 :
3x+2y = 18
2x+y = 10
x=2, y= 6
The feasible region determined by the constraints is
shown. The three vertices are (0, 10), and (6, 0), (0,9)
and (2,6)
First evaluate C = 3x -2 y at each of the vertices.
At (0, 10): C = 3(0) - 2(10) = -17
At (6, 0): C = 3(6) - 2(0) = 18
At ( 2,6) : C = 3(2) -2(6) = -6
At (0,9) : C = 3(0)-2(9)= -18
the maximum value occur on 18 when x=9 and y=0

Given the objective function is [tex]C=3x-2y[/tex] and the contraints as follows:
[tex]x\geq 0\\ y\geq 0\\ 2x+y\leq 10\\ 3x+2y\leq 18[/tex]
- Find the intersecting point of [tex]x=0[/tex] and [tex]2x+y=10[/tex].
Substitute 0 for [tex]x[/tex] in [tex]2x+y=10[/tex].
[tex]2(0)+y=10\\ y=10[/tex]
So, the intersecting point is [tex](0,10)[/tex].
- Find the intersecting point of [tex]y=0[/tex] and [tex]2x+y=10[/tex].
Substitute 0 for [tex]y[/tex] in [tex]2x+y=10[/tex].
[tex]2x+0=10\\ 2x=10\\ x=5[/tex]
So, the intersecting point is [tex](5,0)[/tex].
- Find the intersecting point of [tex]x=0[/tex] and [tex]3x+2y=18[/tex].
Substitute 0 for [tex]x[/tex] in [tex]3x+2y=18[/tex].
[tex]3(0)+2y=18\\ 2y=18\\ y=9[/tex]
So, the intersecting point is [tex](0,9)[/tex].
- Find the intersecting point of [tex]y=0[/tex] and [tex]3x+2y=18[/tex].
Substitute 0 for [tex]y[/tex] in [tex]3x+2y=18[/tex].
[tex]3x+2(0)=18\\ 3x=18\\ x=6[/tex]
So, the intersecting point is [tex](6,0)[/tex].
- Find the intesecting point of [tex]2x+y=10,3x+2y=18[/tex].
Add [tex]-2[/tex] times [tex]2x+y=10[/tex] to [tex]3x+2y=18[/tex].
[tex]-2(2x+y)+3x+2y=-2(10)+18\\ -4x-2y+3x+2y=-20+18\\ -x=-2\\ x=2[/tex]
Substitute [tex]x=2[/tex] in [tex]2x+y=10[/tex]:
[tex]2(2)+y=10\\ 4+y=10\\y=6[/tex]
So, the intersecting point is [tex](2,6)[/tex].
- The origin [tex](0,0)[/tex] is also a intersecting point of [tex]x\geq 0,y\geq 0[/tex].
Corner points:
The corner points are the boundary points of the bounded region of the given constraints.
The bounded region of the given constraints is shown below.
- From the graph notice that the shaded region is the required bounded region of the given constraints.
- The boundary points are [tex](0,0),(5,0),(0,9),(2,6)[/tex].
Evaluate the objective function [tex]C=3x-2y[/tex]at these boundary points:
At [tex](0,0)[/tex]:
[tex]C=3(0)-2(0)\\C=0[/tex]
At [tex](5,0)[/tex]:
[tex]C=3(5)-2(0)\\C=15[/tex]
At[tex](0,9)[/tex]:
[tex]C=3(0)-2(9)\\C=-18[/tex]
At[tex](2,6)[/tex]:
[tex]C=3(2)-2(6)\\C=6-12\\C=-6[/tex]
From the above calculated values, one can notice that the maximum value of [tex]C[/tex] is 15 and it is obtained at [tex](5,0)[/tex].
Hence, the maximum value of [tex]C[/tex] is 15 occurs at the corner point [tex](5,0)[/tex].
Lear more about the maximizing problems here: https://brainly.com/question/13112754
