Respuesta :
Answer: a) √50
b) n = 1 + 7i
Step-by-step explanation:
first, the modulus of a complex number z = a + bi is
IzI = √(a^2 + b^2)
The fact that n is complex does not mean that n doesn't has a real part, so we must write our numbers as:
m = 2 + 6i
n = a + bi
Im + nI = 3√10
Im + n I = √(a^2 + b^2 + 2^2 + 6^2)= 3√10
= √(a^2 + b^2 + 40) = 3√10
a^2 + b^2 + 40 = 3^2*10 = 9*10 = 90
a^2 + b^2 = 90 - 40 = 50
√(a^2 + b^2 ) = InI = √50
The modulus of n must be equal to the square root of 50.
now we can find any values a and b such a^2 + b^2 = 50.
for example, a = 1 and b = 7
1^2 + 7^2 = 1 + 49 = 50
Then a possible value for n is:
n = 1 + 7i
Answer:
the modulus of a complex number z = a + bi is:
Izl= √(a²+b²)
The fact that n is complex does not mean that n doesn't has a real part, so we must write our numbers as:
m = 2 + 6i
n = a + bi
Im + nl = 3√10
√(a² + b²+ 2²+ 6²)= 3√10
√(a^2 + b^2 + 40) = 3√10
squaring both side
a²+b²+40 = 3^2*10 = 9*10 =90
a²+b²= 90 - 40
a²+b²=50
So,
|n|=√(a^2 + b^2) = √50
The modulus of n must be equal to the square root of 50.
now
values a and b such
a^2 + b^2 = 50.
for example, a = 5 and b = 5
5²+5²=25+25= 50
Then a possible value for n is:
n = 5+5i