Respuesta :

Space

Answer:

[tex]\displaystyle P'(x) = \frac{60}{(4x + 5)^2}[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]

Derivative Property [Addition/Subtraction]:                                                         [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:                                                                           [tex]\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle P(x) = \frac{8x - 5}{4x + 5}[/tex]

Step 2: Differentiate

  1. Derivative Rule [Quotient Rule]:                                                                   [tex]\displaystyle P'(x) = \frac{(8x - 5)'(4x + 5) - (8x - 5)(4x + 5)'}{(4x + 5)^2}[/tex]
  2. Basic Power Rule [Derivative Properties]:                                                   [tex]\displaystyle P'(x) = \frac{8(4x + 5) - 4(8x - 5)}{(4x + 5)^2}[/tex]
  3. Expand:                                                                                                         [tex]\displaystyle P'(x) = \frac{32x + 40 - 32x + 20}{(4x + 5)^2}[/tex]
  4. Simplify:                                                                                                         [tex]\displaystyle P'(x) = \frac{60}{(4x + 5)^2}[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation