Find derivative of the average profit function.

Answer:
[tex]\displaystyle P'(x) = \frac{60}{(4x + 5)^2}[/tex]
General Formulas and Concepts:
Calculus
Differentiation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Basic Power Rule:
Derivative Rule [Quotient Rule]: [tex]\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle P(x) = \frac{8x - 5}{4x + 5}[/tex]
Step 2: Differentiate
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation