Respuesta :
Answer:
The point of estimate for the true difference would be:
[tex] 186-171= 15[/tex]
And the confidence interval is given by:
[tex] (186-171) -1.77 \sqrt{\frac{33^2}{8} +\frac{23^2}{7}}= -10.753[/tex]
[tex] (186-171) +1.77 \sqrt{\frac{33^2}{8} +\frac{23^2}{7}}= 40.753[/tex]
Step-by-step explanation:
For this case we have the following info given:
[tex] \bar X_1 = 186[/tex] the sample mean for the first sample
[tex] \bar X_2 = 171[/tex] the sample mean for the second sample
[tex]s_1 =33[/tex] the sample deviation for the first sample
[tex]s_2 =23[/tex] the sample deviation for the second sample
[tex]n_1 = 8[/tex] the sample size for the first group
[tex]n_2 = 7[/tex] the sample size for the second group
The confidence interval for the true difference is given by:
[tex] (\bar X_1 -\bar X_2) \pm t_{\alpha/2}\sqrt{\frac{s^2_1}{n_1} +\frac{s^2_2}{n_2}}[/tex]
We can find the degrees of freedom are given:
[tex] df = n_1 +n_2 -2 =8+7-2= 13[/tex]
The confidence level is given by 90% so then the significance would be [tex]\alpha=1-0.9=0.1[/tex] and [tex]\alpha/2=0.05[/tex] we can find the critical value with the degrees of freedom given and we got:
[tex] t_{\alpha/2}= \pm 1.77[/tex]
The point of estimate for the true difference would be:
[tex] 186-171= 15[/tex]
And replacing into the formula for the confidence interval we got:
[tex] (186-171) -1.77 \sqrt{\frac{33^2}{8} +\frac{23^2}{7}}= -10.753[/tex]
[tex] (186-171) +1.77 \sqrt{\frac{33^2}{8} +\frac{23^2}{7}}= 40.753[/tex]